In vitro selection of halo-thermophilic RNA reveals two families of resistant RNA.
نویسندگان
چکیده
The "RNA world" hypothesis proposes that early in the evolution of life, RNA was responsible both for the storage and transfer of genetic information and for the catalysis of biochemical reactions. One of the problems of the hypothesis is that RNA is known to be temperature sensitive. Nevertheless, different types of sequences with a thermostable phenotype may exist. In order to test this possibility, we applied an in vitro evolution method (SELEX) to isolate RNA molecules that are resistant at high temperatures (80 degrees C for 65 h) and high salt concentrations (2 M NaCl). The sequences of the resulting cloned halo-thermophilic RNAs can be grouped in two families (I and II) possessing very different thermal and chemical stabilities and very different secondary structures. The selected RNA molecules illustrate two different possibilities leading to thermal resistance which may be related to primitive conditions. We propose that members of family I constitute a good means of storing sequence information while members of family II are less efficient but replicate faster in early steps of the SELEX. These selected RNA behaviors may be related to primitive conditions and could allow to define limits for survival, and demonstrate that what is at stake for RNA molecules, as for living organisms, is survival and reproduction.
منابع مشابه
Credit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملThe chaperonin of the archaeon Sulfolobus solfataricus is an RNA-binding protein that participates in ribosomal RNA processing.
The 60 kDa molecular chaperones (chaperonins) are high molecular weight protein complexes having a characteristic double-ring toroidal shape; they are thought to aid the folding of denatured or newly synthesized polypeptides. These proteins exist as two functionally similar, but distantly related families, one comprising the bacterial and organellar chaperonins and another (the so-called CCT-TR...
متن کاملEffect of Phosalone on Testicular Tissue and In Vitro Fertilizing Potential
Background The current study aimed to evaluate the effects of phosalone (PLN) as an organophosphate (OP) compound on testicular tissue, hormonal alterations and embryo development in rats. MaterialsAndMethods In this experimental study, we divided 18 mature Wistar rats into three groups-control, control-sham and test (n=6 per group). Animals in the test group received one-fourth the lethal dose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Gene
دوره 371 2 شماره
صفحات -
تاریخ انتشار 2006